80 research outputs found

    The EHA research roadmap: anemias

    Get PDF
    In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by one to two section editors who were leading international experts in the field. In the five years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The eleven EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cellbased Immune Therapies; and Gene Therap

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    Rivaroxaban Compared with Standard Anticoagulants for the Treatment of Acute Venous Thromboembolism in Children: a Randomised, Controlled, Phase 3 Trial

    Full text link
    Background: Treatment of venous thromboembolism in children is based on data obtained in adults with little direct documentation of its efficacy and safety in children. The aim of our study was to compare the efficacy and safety of rivaroxaban versus standard anticoagulants in children with venous thromboembolism. Methods: In a multicentre, parallel-group, open-label, randomised study, children (aged 0–17 years) attending 107 paediatric hospitals in 28 countries with documented acute venous thromboembolism who had started heparinisation were assigned (2:1) to bodyweight-adjusted rivaroxaban (tablets or suspension) in a 20-mg equivalent dose or standard anticoagulants (heparin or switched to vitamin K antagonist). Randomisation was stratified by age and venous thromboembolism site. The main treatment period was 3 months (1 month in children <2 years of age with catheter-related venous thromboembolism). The primary efficacy outcome, symptomatic recurrent venous thromboembolism (assessed by intention-to-treat), and the principal safety outcome, major or clinically relevant non-major bleeding (assessed in participants who received ≥1 dose), were centrally assessed by investigators who were unaware of treatment assignment. Repeat imaging was obtained at the end of the main treatment period and compared with baseline imaging tests. This trial is registered with ClinicalTrials.gov, number NCT02234843 and has been completed. Findings: From Nov 14, 2014, to Sept 28, 2018, 500 (96%) of the 520 children screened for eligibility were enrolled. After a median follow-up of 91 days (IQR 87–95) in children who had a study treatment period of 3 months (n=463) and 31 days (IQR 29–35) in children who had a study treatment period of 1 month (n=37), symptomatic recurrent venous thromboembolism occurred in four (1%) of 335 children receiving rivaroxaban and five (3%) of 165 receiving standard anticoagulants (hazard ratio [HR] 0·40, 95% CI 0·11–1·41). Repeat imaging showed an improved effect of rivaroxaban on thrombotic burden as compared with standard anticoagulants (p=0·012). Major or clinically relevant non-major bleeding in participants who received ≥1 dose occurred in ten (3%) of 329 children (all non-major) receiving rivaroxaban and in three (2%) of 162 children (two major and one non-major) receiving standard anticoagulants (HR 1·58, 95% CI 0·51–6·27). Absolute and relative efficacy and safety estimates of rivaroxaban versus standard anticoagulation estimates were similar to those in rivaroxaban studies in adults. There were no treatment-related deaths. Interpretation: In children with acute venous thromboembolism, treatment with rivaroxaban resulted in a similarly low recurrence risk and reduced thrombotic burden without increased bleeding, as compared with standard anticoagulants. Funding: Bayer AG and Janssen Research & Development. © 2020 Elsevier Ltd

    Congenital dyserythropoietic anemias: molecular insights and diagnostic approach

    No full text
    The congenital dyserythropoietic anemias (CDAs) are hereditary disorders characterized by distinct morphologic abnormalities of marrow erythroblasts. The unveiling of the genes mutated in the major CDA subgroups (I-CDAN1 and II-SEC23B) has now been completed with the recent identification of the CDA III gene (KIF23). KIF23 encodes mitotic kinesin-like protein 1, which plays a critical role in cytokinesis, whereas the cellular role of the proteins encoded by CDAN1 and SEC23B is still unknown. CDA variants with mutations in erythroid transcription factor genes (KLF1 and GATA-1) have been recently identified. Molecular diagnosis of CDA is now possible in most patients
    corecore